Abstract

BackgroundTuberculosis (TB) is a leading cause of death in children, but many cases are never diagnosed. Microbiological diagnosis of pulmonary TB is challenging in young children who cannot spontaneously expectorate sputum. Nasopharyngeal aspirates (NPA) may be more easily collected than gastric aspirate and induced sputum and can be obtained on demand, unlike stool. However, further information on its diagnostic yield is needed.MethodsWe systematically reviewed and meta-analyzed the diagnostic yield of one NPA for testing by either culture or nucleic acid amplification testing (NAAT) to detect Mycobacterium tuberculosis from children. We searched three bibliographic databases and two trial registers up to 24th November 2022. Studies that reported the proportion of children diagnosed by NPA compared to a microbiological reference standard (MRS) were eligible. Culture and/or WHO-endorsed NAAT on at least one respiratory specimen served as the MRS. We also estimated the incremental yield of two NPA samples compared to one and summarized operational aspects of NPA collection and processing. Univariate random-effect meta-analyses were performed to calculate pooled diagnostic yield estimates.ResultsFrom 1483 citations, 54 were selected for full-text review, and nine were included. Based on six studies including 256 children with microbiologically confirmed TB, the diagnostic yield of NAAT on one NPA ranged from 31 to 60% (summary estimate 44%, 95% CI 36–51%). From seven studies including 242 children with confirmed TB, the diagnostic yield of culture was 17–88% (summary estimate 58%, 95% CI 42–73%). Testing a second NPA increased the yield by 8–19% for NAAT and 4–35% for culture. NPA collection procedures varied between studies, although most children had NPA successfully obtained (96–100%), with a low rate of indeterminate results (< 5%). Data on NPA acceptability and specifically for children under 5 years were limited.ConclusionsNPA is a suitable and feasible specimen for diagnosing pediatric TB. The high rates of successful collection across different levels of healthcare improve access to microbiological testing, supporting its inclusion in diagnostic algorithms for TB, especially if sampling is repeated. Future research into the acceptability of NPA and how to standardize collection to optimize diagnostic yield is needed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.