Abstract

Simple SummaryDespite recent advances in molecular brain tumor therapies, glioblastoma multiforme remains a diagnostic and therapeutic challenge with, in most cases, unfavorable outcome. Leptin and related mediators of immune-metabolic traffic have attracted increased recognition in the past decade in brain tumor biology, in particular potential implications in the diagnosis and treatment of recurrent and newly diagnosed high and low grade gliomas. Randomized controlled trails are on the way to elaborate the role of leptin and its receptor ObR by targeting and using antidiabetic drugs known to interact with distinct pathways associated with leptin signaling. To date, most of the findings in clinical studies remain preliminary and of heterogenous character, although experimental studies have underpinned the relevance of leptin and ObR in the pathophysiology of brain tumors in general.Leptin has been recognized as a potential tumor growth promoter in various cancers including cranial tumor pathologies such as pituitary adenomas, meningiomas and gliomas. Despite recent advances in adjunctive therapy and the established surgical resection, chemo- and radiotherapy regimen, glioblastoma multiforme remains a particular diagnostic and therapeutic challenge among the intracranial tumor pathologies, with a poor long-term prognosis. Systemic inflammation and immune-metabolic signaling through diverse pathways are thought to impact the genesis and recurrence of brain tumors, and glioblastoma multiforme in particular. Among the various circulating mediators, leptin has gained especial diagnostic and therapeutic interest, although the precise relationship between leptin and glioblastoma biology remains largely unknown. In this narrative review (MEDLINE/OVID, SCOPUS, PubMed and manual searches of the bibliographies of known primary and review articles), we discuss the current literature using the following search terms: leptin, glioblastoma multiforme, carcinogenesis, immunometabolism, biomarkers, metformin, antidiabetic medication and metabolic disorders. An increasing body of experimental evidence implicates a relationship between the development and maintenance of gliomas (and brain tumors in general) with a dysregulated central and peripheral immune-metabolic network mediated by circulating adipokines, chemokines and cellular components, and in particular the leptin adipokine. In this review, we summarize the current evidence of the role of leptin in glioblastoma pathophysiology. In addition, we describe the status of alternative diagnostic tools and adjunctive therapeutics targeting leptin, leptin-receptors, antidiabetic drugs and associated pathways. Further experimental and clinical trials are needed to elucidate the mechanism of action and the value of immune-metabolism molecular phenotyping (central and peripheral) in order to develop novel adjunctive diagnostics and therapeutics for newly diagnosed and recurrent glioblastoma patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.