Abstract

Strain analysis of cardiac magnetic resonance (CMR) is critical for the diagnosis and prognosis of heart failure (HF) with preserved ejection fraction (HFpEF). Our study aimed to identify the diagnostic and prognostic value of strain analysis revealed by CMR in HFpEF. Participants in HFpEF and control were recruited according to the guideline. Baseline information, clinical parameters, blood samples were collected, and echocardiography and CMR examination were performed. Various parameters, including global longitudinal strain, global circumferential strain (GCS) and global radial strain in left ventricle (LV), right ventricle (RV), and left atrium, were measured from CMR. Receiver operator curve (ROC) was established to evaluate the diagnostic and prognostic value of strains in HFpEF. Seven strains, with the exception of RVGCS, were employed to generate ROC curves after t-test. All strains had significant diagnostic value for HFpEF. The area under curve (AUC) of LV strains was greater than 0.7 and the AUC of the combined analysis of LV strains was 0.858 (95% confidence interval (CI): 0.798-0.919, sensitivity: 0.713, specificity: 0.875, P < 0.001), indicating that they had a higher diagnostic value than individual LV strains. However, individual strains had no predictive value in identifying end-point events in HFpEF, the AUC of coanalysis of LV strains was 0.722 (95% CI: 0.573-0.872, sensitivity: 0.500, specificity: 0.959, P = 0.004), indicating its prognostic relevance. Individual strain analysis in CMR may be useful for diagnosing HFpEF, the combination of LV strain analysis had the highest diagnostic value. Moreover, the prognostic value of individual strain analysis in predicting HFpEF outcome was not satisfactory while the combined usage of LV strain analysis was prognostically valuable in HFpEF outcome prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call