Abstract

18F-fluoro-ethyl-tyrosine (18F-FET) is recommended to distinguish brain tumours post-therapeutic true progression (including recurrent and metastatic brain tumours) and treatment-related change (TRC). However, many parameters of 18F-FET can be used for this differential diagnosis. Our purpose was to investigate the diagnostic accuracy of various 18F-FET parameters to differentiate true progression from TRC. We performed a literature search using the following databases: the PubMed, Embase and Web of Science databases up to 29 November 2020. We included studies that reported the diagnostic test results of 18F-FET to distinguish true progression from TRC. The Quality Assessment of Diagnostic Accuracy Studies-2 tool was used to evaluate the quality of the included studies. The diagnostic accuracy of various parameters was pooled using a random-effects model. We included 17 eligible studies (nine parameters). For static parameters of 18F-FET, the maximum and mean tumour-to-brain ratios (TBRmax and TBRmean) showed similar pooled sensitivities of 82% [95% confidence interval (CI), 80-85%) and 82% (95% CI, 78-85%), respectively. Among the three kinetic parameters (slope, time to peak and kinetic pattern), the kinetic pattern presented the optimal diagnostic value with a pooled sensitivity of 81% (95% CI, 75-86%). When combining the static and kinetic parameters, the diagnostic performance of 18F-FET was significantly improved, with a pooled sensitivity of 90% (95% CI, 84-94%) in the combination of TBR and kinetic patterns. 18F-FET static parameters alone showed a comparably high sensitivity in the differentiation between brain tumour true progression and TRC. Combining static and kinetic parameters provided improved diagnostic performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.