Abstract

BackgroundBreast cancer is one of the leading causes of female morbidity and mortality. Management options vary between lesions of BIRADS categories 3 and 4. Therefore, reliable differentiation would improve outcome. Although sonomammography and contrast-enhanced breast magnetic resonance imaging (CE-MRI) remain the cornerstone for assessment of breast disease, additional, non-invasive techniques can be used to increase the efficiency of evaluation such as shear wave elastography (SWE) and diffusion-weighted magnetic resonance imaging (DW-MRI). This prospective study included 66 breast lesions that were categorized as BIRADS 3 or 4 by ultrasound ± mammography. All lesions were evaluated by SWE, CE-MRI and DW-MRI. For SWE, lesions were evaluated by both qualitative and quantitative methods. For CE-MRI, both morphological and kinematic evaluations were done and for DW-MRI, both qualitative and quantitative assessments were studied. Results of all imaging modalities were correlated to histopathology.ResultsThirty-seven out of the examined 66 lesions (56.06%) were categorised as BIRADS 3, out of which 1 (2.7%) turned out to be malignant on histopathology and 36 (97.29%) were proved benign. Twenty-nine (43.93%) were categorized as BIRADS 4, out of which 2 (6.89%) turned out to be benign on pathology and 27 (93.1%) were proved malignant. Morphological and kinematic evaluations of CE-MRI showed 92.59% and 92.86%sensitivity, 94.74% and 84.21% specificity, 92.59 and 81.25%PPV, 94.74 and 94.12% NPV, and 93.85% and 87.88% accuracy respectively. Color-coded scoring of SWE showed indices of 89.29%, 68.42%, 67.57%, 89.66%, and 77.27% respectively. The calculated cut-off value for Emax differentiating benign from malignant was 65.15 kpa, resulting in indices of 96.43%, 57.89%, 95.65%, 62.79%, and 74.24% respectively. For Eratio, the calculated cut-off value was 4.55, resulting in indices of 71.43%, 68.42%, 76.47%, 62.50% and 69.70% respectively. For qualitative evaluation of DW-MRI, indices were 78.57%, 65.79%, 62.86%, 80.65%, and 71.21% respectively. For ADC, the calculated cut-off value was 1.25 × 103 mm2/s, which resulted in indices of 75.00%, 84.21%, 82.05%, 77.78%, and 80.30% respectively.ConclusionCE-MRI showed the best diagnostic performance indices. While, SWE and DW-MRI present variable diagnostic performance, both techniques can be used as an adjunct to other imaging modalities to aid the clinical decision and increase its diagnostic confidence.

Highlights

  • Breast cancer is one of the leading causes of female morbidity and mortality

  • Shear wave elastography (SWE) and diffusion-weighted magnetic resonance imaging (DW-MRI) present variable diagnostic performance, both techniques can be used as an adjunct to other imaging modalities to aid the clinical decision and increase its diagnostic confidence

  • The objective of this study was to evaluate the additive value of using either SWE or DW-MRI in differentiating lesions categorized as Breast imaging reporting and database system score (BIRADS) 3 or 4, both being noninvasive techniques that can be utilized in the preoperative setting in the clinical decision making

Read more

Summary

Introduction

Breast cancer is one of the leading causes of female morbidity and mortality. Management options vary between lesions of BIRADS categories 3 and 4. Sonomammography and contrast-enhanced breast magnetic resonance imaging (CE-MRI) remain the cornerstone for assessment of breast disease, additional, non-invasive techniques can be used to increase the efficiency of evaluation such as shear wave elastography (SWE) and diffusion-weighted magnetic resonance imaging (DW-MRI). This prospective study included 66 breast lesions that were categorized as BIRADS 3 or 4 by ultrasound ± mammography. Diffusion-weighted magnetic resonance imaging (DWMRI) is a non-contrast enhanced technique of magnetic resonance imaging that utilizes water molecule microscopic motion to produce an image and is reported to have the potential of differentiating malignant from benign tissue, both qualitatively (via visually detecting the signal of a lesion) or quantitatively (via measuring apparent diffusion coefficient-ADC) [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call