Abstract

BackgroundSymptomatic dengue infection can result in a life-threatening shock syndrome and timely diagnosis is essential. Point-of-care tests for non-structural protein 1 and IgM are used widely but performance can be limited. We developed a supervised machine learning model to predict whether patients with acute febrile illnesses had a diagnosis of dengue or other febrile illnesses (OFI). The impact of seasonality on model performance over time was examined.MethodsWe analysed data from a prospective observational clinical study in Vietnam. Enrolled patients presented with an acute febrile illness of <72 h duration. A gradient boosting model (XGBoost) was used to predict final diagnosis using age, sex, haematocrit, platelet, white cell, and lymphocyte count collected on enrolment. Data was randomly split 80/20% into a training and hold-out set, respectively, with the latter not used in model development. Cross-validation and hold out set testing was used, with performance over time evaluated through a rolling window approach.ResultsWe included 8,100 patients recruited between 16th October 2010 and 10th December 2014. In total 2,240 (27.7%) patients were diagnosed with dengue infection. The optimised model from training data had an overall median area under the receiver operator curve (AUROC) of 0.86 (interquartile range 0.84–0.86), specificity of 0.92, sensitivity of 0.56, positive predictive value of 0.73, negative predictive value (NPV) of 0.84, and Brier score of 0.13 in predicting the final diagnosis, with similar performances in hold-out set testing (AUROC of 0.86). Model performances varied significantly over time as a function of seasonality and other factors. Incorporation of a dynamic threshold which continuously learns from recent cases resulted in a more consistent performance throughout the year (NPV >90%).ConclusionSupervised machine learning models are able to discriminate between dengue and OFI diagnoses in patients presenting with an early undifferentiated febrile illness. These models could be of clinical utility in supporting healthcare decision-making and provide passive surveillance across dengue endemic regions. Effects of seasonality and changing disease prevalence must however be taken into account—this is of significant importance given unpredictable effects of human-induced climate change and the impact on health.

Highlights

  • Dengue is an important viral infection and accounts for a considerable burden of disease worldwide

  • The use of tacit knowledge such as seasonality and reports of local outbreaks are used by clinicians to assess the overall risk of dengue— these are an important part of clinical decision-making but have not been captured in past models or guidelines

  • We subsequently examined the role of seasonality and a changing background disease prevalence, and investigated methods to maintain consistent performance throughout the year, in order to ensure that the model is of optimal clinical utility regardless of when it is utilised

Read more

Summary

Introduction

Dengue is an important viral infection and accounts for a considerable burden of disease worldwide. As a major cause of acute undifferentiated febrile illness [1], it is the main differential diagnosis in patients presenting with a fever during rainy season in endemic settings. Accurate diagnosis is a priority as those with dengue need to be monitored closely, and there are downstream implications on other aspects of acute febrile illnesses management such as the unnecessary of use of empirical antimicrobials as a driver of antimicrobial resistance [3]. Pointof-care lateral flow assays including those which detect nonstructural protein 1 and/or dengue IgM play a role in supporting diagnosis of acute dengue. Their accuracy can be variable [6] and performance affected by factors such as serotype, illness duration, and disease prevalence. The impact of seasonality on model performance over time was examined

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call