Abstract

Incubation of neutrophils with cytokines such as granulocyte macrophage colony-stimulating factor (GM-CSF) delays their loss of function and changes in cellular morphology that are characteristic of apoptosis. Adenosine triphosphate (ATP) and the diadenosine polyphosphates Ap4A and AP3A were almost as effective as GM-CSF in delaying neutrophil apoptosis. The nucleotides could thus preserve cellular morphology, protect against chromatin fragmentation, and preserve functions such as NADPH oxidase activity and expression of CD16. Moreover, addition of ATP, AP3A and AP4A together with GM-CSF resulted in more pronounced protection from apoptosis than was observed during incubation with either the cytokine or the nucleotides alone. Because ATP, Ap3A, and AP4A may be secreted from activated platelets, these observations suggest that platelet-derived products, perhaps acting in combination with endothelial-derived or immune cell-derived cytokines, can regulate neutrophil function during certain types of inflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.