Abstract

The influence of heat-treating conditions on the retention of carbon-enriched austenite of TRIP-assisted multiphase steel grades containing different amounts of silicon and/or aluminium is investigated. The ensuing mechanical properties resulting from the TRIP effect are also scrutinised. The bainite transformation kinetics was followed by dilatometry whereas a detailed characterisation of the microstructures led to the construction of transformation maps giving the volume fractions of the different phases and the carbon content of austenite. The role of silicon and aluminium additions (i) on the retention of austenite by partial bainite transformation and (ii) on the mechanical properties is enlightened. A strong influence of the solid-solution strengthening effect of silicon is highlighted. Aluminium seems to be an effective alloying element for the retention of austenite in TRIP-aided steels even if lower strength levels can be attained. A mixed Al-Si TRIP-aided steel seems to be a very good compromise between the processing needs, the required mechanical properties and the industrial constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.