Abstract

Complex engineered nanomaterials (CENs) are a rapidly developing class of structurally and compositionally complex materials that are expected to dominate the next generation of functional nanomaterials. The development of methods enabling rapid assessment of the toxicity risk associated with this type of nanomaterial is therefore critically important. We evaluated the toxicity of three differently structured nickel-silica nanomaterials as prototypical CENs: simple, surface-deposited Ni-SiO2 and hollow and non-hollow core-shell Ni@SiO2 materials (i.e., ~1–2 nm Ni nanoparticles embedded into porous silica shells with and without a central cavity, respectively). Zebrafish embryos were exposed to these CENs, and morphological (survival and malformations) and physiological (larval motility) endpoints were coupled with thorough characterization of physiochemical characteristics (including agglomeration, settling and nickel ion dissolution) to determine how toxicity differed between these CENs and equivalent quantities of Ni2+ salt (based on total Ni). Exposure to Ni2+ ions strongly compromised zebrafish larva viability, and surviving larvae showed severe malformations. In contrast, exposure to the equivalent amount of Ni CEN did not result in these abnormalities. Interestingly, exposure to Ni-SiO2 and hollow Ni@SiO2 provoked abnormalities of zebrafish larval motor function, indicating developmental toxicity, while non-hollow Ni@SiO2 showed no toxicity. Correlating these observations with physicochemical characterization of the CENs suggests that the toxicity of the Ni-SiO2 and hollow Ni@SiO2 material may result partly from an increased effective exposure at the bottom of the well due to rapid settling. Overall, our data suggest that embedding nickel NPs in a porous silica matrix may be a straightforward way to mitigate their toxicity without compromising their functional properties. At the same time, our results also indicate that it is critical to consider modification of the effective exposure when comparing different nanomaterial configurations, because effective exposure might influence NP toxicity more than specific “nano-chemistry” effects.

Highlights

  • Nanomaterials are about to fundamentally alter how we exploit the chemical and physical properties of materials

  • Occasional necking between adjacent particles in Transition electron microscopy (TEM) indicates the presence of some aggregation in the synthesized material

  • Our results demonstrate that zebrafish embryos provide a useful screening model for evaluating complex engineered nanomaterials (CENs) toxicity during vertebrate development by combining established and novel methods for detecting phenotypes

Read more

Summary

Introduction

Nanomaterials are about to fundamentally alter how we exploit the chemical and physical properties of materials. This raises the possibility that unexpected nano-specific toxicity will occur through mechanisms that cannot be extrapolated from the analogous bulk material properties [1,2,3,4]. Nano-enabled materials are often designed as multicomponent materials which embed active NPs within a protective matrix [8, 9]. When these multicomponent nanomaterials are rationally designed in hierarchical nanostructures, they are often referred to as complex engineered nanomaterials (CENs). To date, few studies have been conducted on CENs, despite the observations that, compared to single component nanostructures, the toxicity of CENs can be enhanced [10, 11] or attenuated [12]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call