Abstract
The potential neurotoxicity of polybrominated diphenyl ethers (PBDEs) is still a great concern. In the present study, the authors investigated whether exposure to PBDEs could affect the neurotransmitter system and cause developmental neurotoxicity in zebrafish. Zebrafish embryos (2 h postfertilization) were exposed to different concentrations of the PBDE mixture DE-71 (0-100 μg/L). The larvae were harvested at 120 h postfertilization, and the impact on dopaminergic signaling was investigated. The results revealed significant reductions in content of whole-body dopamine and its metabolite, dihydroxyphenylacetic acid, in DE-71-exposed larvae. The transcription of genes involved in the development of dopaminergic neurons (e.g., manf, bdnf, and nr4a2b) was significantly downregulated upon exposure to DE-71. Also, DE-71 resulted in a significant decrease of tyrosine hydroxylase and dopamine transporter protein levels in dopaminergic neurons. The expression level of tyrosine hydroxylase in forebrain neurons was assessed by whole-mount immunofluorescence, and the results further demonstrated that the tyrosine hydroxylase protein expression level was reduced in dopaminergic neurons. In addition to these molecular changes, the authors observed reduced locomotor activity in DE-71-exposed larvae. Taken together, the results of the present study demonstrate that acute exposure to PBDEs can affect dopaminergic signaling by disrupting the synthesis and transportation of dopamine in zebrafish, thereby disrupting normal neurodevelopment. In accord with its experimental findings, the present study extends knowledge of the mechanisms governing PBDE-induced developmental neurotoxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.