Abstract

Over the past 25 years, natural resources have been used up quickly, causing significant damage and contamination to the planet which is earth. Tribology, a new technology for keeping power and parts running, supported extremely fast and efficient coal and oil-powered machinery throughout history. Many different kinds of resource reserves, like those for power and parts, will be gone in a century. Revolutionary zero-emission and durability technologies are in high demand all over the world in order to create new, truly healthy and long-lasting lifestyles for humans and other living things in a symbiotic way. Tribology is expected to expand its technological innovation in order to support a new industrial trend and meet the requirements of the sector. At the moment, the primary factors influencing engine development are cost, performance, governmental requirements, and consumer requirements. In a few instances, the requirements are linked to tribology. For engines to last longer and be more reliable, tribology advancements that reduce friction and increase wear resistance will be crucial. The components under scrutiny are a part of the heavy-duty diesel engines’ valvetrain mechanism. The fuel injector places a lot of strain on the injection cam, making it one of the camshaft’s most problematic components. Lubrication plays a crucial role in avoiding cam failure caused by wear. The cam and roller contact, in any case, has shown to be one of the most provoking tribological plan challenges to handle. For lubricated contacts, the type and amount of wear are significantly influenced by the degree of separation between the surfaces. The term “specific film thickness” refers to this degree of separation and measures the degree to which asperities interact with one another in the lubricated contact. In order to predict lubrication regimes and, consequently, identify the injection cam’s likely wear zones, this paper focuses on measuring the oil film thickness in the cam-roller contact and other machine parts that follows. The results of the experiment (the observation of worn cam surfaces) are then confronted. In the near future, a multivariate analysis will be used to ascertain how the various parameters affect oil film thickness. The following stage will primarily focus on modeling injection cam wear, which will also include quantifying relationships between wear and a specific film thickness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call