Abstract
The morphogenesis of serotonin- and FMRF-amide-bearing neuronal elements in the scaphopod Antalis entalis was investigated by means of antibody staining and confocal laser scanning microscopy. Nervous system development starts with the establishment of two initial, flask-like, serotonergic central cells of the larval apical organ. Slightly later, the apical organ contains four serotonergic central cells which are interconnected with two lateral serotonergic cells via lateral nerve projections. At the same time the anlage of the adult FMRF-amide-positive cerebral nervous system starts at the base of the apical organ. Subsequently, the entire neuronal complex migrates behind the prototroch and the six larval serotonergic cells lose transmitter expression prior to metamorphic competence. There are no strictly larval FMRF-amide-positive neuronal structures. The development of major adult FMRF-amide-containing components such as the cerebral system, the visceral loop, and the buccal nerve cords, however, starts before the onset of metamorphosis. The anlage of the putative cerebral system is the only site of adult serotonin expression in Antalis larvae. Establishment of the adult FMRF-amidergic and serotonergic neuronal bauplan proceeds rapidly after metamorphosis. Neurogenesis reflects the general observation that the larval phase and the expression of distinct larval morphological features are less pronounced in Scaphopoda than in Gastropoda or Bivalvia. The degeneration of the entire larval apical organ before metamorphic competence argues against an involvement of this sensory system in scaphopod metamorphosis. The lack of data on the neurogenesis in the aplacophoran taxa prevent a final conclusion regarding the plesiomorphic condition in the Mollusca. Nevertheless, the results presented herein shed doubts on general theories regarding possible functions of larval "apical organs" of Lophotrochozoa or even Metazoa.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.