Abstract

The purpose of this study is to investigate the relationship of the vertical deformation between the scaled-down pavement test and full-scale pavement structure according to the theory of similitude-based analysis procedure. Finite element analysis used to investigate and establish the relationship between the scaled-down and full-scale models. Four scaled-down models with scaling factors of 0.9, 0.75, 0.6, and 0.45 with two types of constitutive models of asphalt concrete materials, elastic and viscoelastic, are considered. The results show that the vertical deformation in the full-scale model achieved by applying a vertical shift to the vertical deformation in the scaled-down model. The vertical shift factor varies linearly in normal and logarithm scale with the scaling factor from 0.9 to 0.45 for linear elastic and viscoelastic material, respectively. Moreover, this study proposes a systematic analysis procedure to determine the testing temperature in the SALS test at a specific loading speed by using the time–temperature superposition principle. This study contributes considerably to preliminary understanding of the relationship between the scaled-down tester in the laboratory and the full-scale model according to the theory of similitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.