Abstract
The relationship of dorsal root afferents to motoneuron somata and dendrites was studied by labelling dorsal and ventral roots of the tadpole lumbar enlargement with HRP at different stages of hindlimb development. Procedures were used which allowed for sequential light and electron microscopic analysis to determine whether close appositions between labelled elements represented synaptic contacts. Lateral motor column (LMC) motoneuron dendrites grow first into the lateral funiculus, and later begin arborizing within the spinal gray, concurrent with the arrival of developing dorsal root afferent fibers. Mature-appearing synaptic contacts between dorsal root afferents and motoneuron dendrites are established first on distal dendrites, and are observed on progressively more proximal dendrites as hindlimb development proceeds. Migrating motoneurons were also labelled in some animals. Distinct dorsal and ventral migratory pathways were noted; cells migrating dorsally were contacted by developing dorsal root afferents. Migrating motoneurons were associated with radially oriented processes, and were often closely apposed to other cells. The coincident development of dorsal root projections and the motoneuron dendrites which these fibers innervate in the adult, as well as the interaction between these two systems during cell migration, suggest that these two systems may be interdependent in establishing their normal relationship during development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.