Abstract
Between 1980 and 1986 geological surveying to produce maps on a scale of 1:250,000 was completed over an area of over 100,000 km 2 in north-central Kenya, bounded by the Equator, the Ethiopian border and longitudes 36° and 38 °E. The Gregory Rift, much of which has the structure of an asymmetric half-graben, is the most prominent component of the Cenozoic multiple rift system which extends up to 200 km to the east and for about 100 km to the west, forming the Kenya dome. On the eastern shoulder and fringes two en echelon arrays of late Tertiary to Quaternary multicentre shields can be recognized: to the south is the Aberdares-Mount Kenya-Nyambeni Range chain and, to the north the clusters of Mount Kulal, Asie, Huri Hills and Marsabit, with plateau lavas and fissure vents south of Marsabit in the Laisamis area. The Gregory Rift terminates at the southern end of Lake Turkana. Further north the rift system splays: the arcuate Kinu Sogo fault zone forms an offset link with the central Ethiopian Rift system. In the rifts of north-central Kenya volcanism, sedimentation and extensional tectonics commenced and have been continuous since the late Oligocene. Throughout this period the Elgeyo Fault acted as a major bounding fault. A comparative study of the northern and eastern fringes of the Kenya dome with the axial graben reinforces the impression of regional E-W asymmetry. Deviations from the essential N-trend of the Gregory Rift reflect structural weaknesses in the underlying Proterozoic basement, the Mozambique Orogenic Belt: thus south of Lake Baringo the swing to the southeast parallels the axes of the ca. 620 Ma phase folds. Secondary faults associated with this flexure have created a “shark tooth” array, an expression of en echelon offsets of the eastern margin of the Gregory Rift in a transtensional stress regime: hinge zones where major faults intersect on the eastern shoulder feature intense box faulting and ramp structures which have counterparts in the rift system in southern Ethiopia. The NE- and ENE-trending fissures of the eastern fringes of the Kenya dome, notably in the Meru-Nyambeni areaand in the Huri and Marsabit shields, parallel late orogenic structures dated at around 580-480 Ma. Alkaline trends characterize the petrochemistry of the Cenozoic volcanics: In the Gregory Rift, voluminous Miocene alkali basalts, associated with hawaiite/mugearite lavas, define a trend culminating in the Miocene flood phonolites of the eastern shoulderand in the trachyphonolites, trachytes and peralkaline rhyolites, with associated pyroclastics, in central volcanoes such as Korosi, Paka and Silali. Such trends may manifest in the products of a single volcanic centre, also regionally on a broadly cyclic basis. On the eastern flanks of the Kenya dome the flood phonolites are less evident, but the same alkaline trends dominate the lava sequences, supplemented by nephelinitic extrusives in parts of the Nyambeni Range and in the Laisamis area. Results from recent seismicity surveys in the Laisamis area indicate that crustal extension may be currently active on the eastern fringes of the Kenya dome, but manifest at greater depths than in the axial Gregory Rift-Lake Turkana zone: a correlation is suggested with the ultra-alkaline petrochemistry of some of the eastern multicentre shields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.