Abstract

Flexible electronic devices play a key role in the fields of flexible batteries, electronic skins, and flexible displays, which have attracted more and more attention in the past few years. Among them, the application areas of electronic skin in new energy, artificial intelligence, and other high-tech applications are increasing. Semiconductors are an indispensable part of electronic skin components. The design of semiconductor structure not only needs to maintain good carrier mobility, but also considers extensibility and self-healing capability, which is always a challenging work. Though flexible electronic devices are important for our daily life, the research on this topic is quite rare in the past few years. In this work, the recently published work regarding to stretchable semiconductors as well as self-healing conductors are reviewed. In addition, the current shortcomings, future challenges as well as an outlook of this technology are discussed. The final goal is to outline a theoretical framework for the design of high-performance flexible electronic devices that can at the same time address their commercialization challenges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.