Abstract

The electroanalytical study of ascorbic acid, acetaminophen and of several mixtures of these compounds in different ratios has been made by using a carbon paste electrode (CPE-graphite:solid paraffin 2:1) as working electrode and an Ag/AgCl reference electrode. The potential curves were recorded using different concentrations of ascorbic acid and acetaminophen by measuring samples between 10 and 50 μl. The oxidation reactions were studied in a potential range from −0.1 to +1.3 V with different sweep rates, at different current sensitivities, in stationary working conditions and stirring before each replicate. The oxidation of ascorbic acid occurs at +0.31±0.02 V and the oxidation of acetaminophen at +0.60±0.05 V; meanwhile, the current has a linear variation for the following concentration ranges: 10 −3–10 −2 M for the ascorbic acid and 3×10 −6–7.5×10 −3 M for acetaminophen ( r 2=0.999 for both ascorbic acid and acetaminophen). The mixtures of ascorbic acid and acetaminophen were made as follows: 1:1, 1:2, 1:3, 2:1, and 3:1. The studies revealed the alteration of the voltammograms processed according to the validation methodology. The best potential variation range for different current sensitivities, the influence of the sweep rate, of the solvent volume and of the pH were studied. The mutual interferences of the compounds in the mixtures and the electroactive compounds in the pharmaceutical dosage forms, especially effervescent ones, also made the object of the research. The same mixtures were studied using the direct spectrophotometric method that revealed a lot of spectral interferences. In order to solve this problem, an appropriate separation or an indirect spectrophotometric method (the apparent content curves method) were used. The spectrophotometric and voltammetric methods developed were used to determine ascorbic acid and acetaminophen in different dosage forms (vials, tablets, suppositories and effervescent dosage forms). The results were compared with those obtained by other techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.