Abstract

Rowing as an on-river sports has a long history dating back to the 16th century. The deeper understanding of fluid dynamics theory and the development of advanced material and manufacturing science and technology have inevitably fueled the continuous improvement on the world record of the rowing sports. The current paper focuses on the accurate extraction of the kinematics information including the boats location, velocity, and acceleration, resulting from the athletes rowing motion. A consumer-level digital camera is used for imaging the rowing motion at 50 frames per second from a distance, corresponding to a specific field of view ranging from 12 m 36 m. Furthermore, due to large-scale imaging lens distortion, the physical resolution is varying significantly due to imaging location change. A video-specific calibration method using fourth order polynomials are developed to calibrate the physical resolution of each pixel based on the physical length of the boat. The resulting data is pixel-level accurate and provides detailed record for athletes training. The acquired information is extremely useful in gauging athletes performance and can be further analyzed to provide concrete technical improvement advice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.