Abstract

This paper reports simulated sequential frequency sweep data which have been reconstructed from time resolved viscoelastic data obtained by Fourier transform mechanical spectroscopy. Comparisons of the results show that the recording of anomalous values of the stress relaxation power law exponent α at the Gel Point under ‘rapid’ gelling conditions may be due to inappropriate rheological techniques. An appropriate rheometrical criterion is established for the application of sequential frequency sweeps in order to obtain accurate values of α in the formation of strain-sensitive, rapidly formed gels. Furthermore, using appropriate rheometry, we report values of α for fibrin–thrombin gels formed by the addition of thrombin to a physiologically relevant level of human fibrinogen, and relate these values to the microstructure of the fibrin gel network in terms of a fractal dimension. The present study is the first to report a modification of the fractal characteristics of incipient clots in fibrin–thrombin gels due to the availability of thrombin. This work confirms the hypothesis that the self-similar (fractal) stress relaxation behaviour recorded at the Gel Point of samples of coagulating blood (Evans et al. 2010a, b) is associated with the microstructural characteristics of the incipient blood clot’s fibrin network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.