Abstract

There is an urgent need to transition from fossil fuels to solar fuels — not only to lower CO2 emissions that cause global warming but also to ration fossil resources. Splitting H2O with sunlight emerges as a clean and sustainable energy conversion scheme that can afford practical technologies in the short-to-mid-term. A crucial component in such a device is a water oxidation catalyst (WOC). These artificial catalysts have been developed mainly over the past two decades, which is in contrast to nature’s WOCs, which have featured in its photosynthetic apparatus for more than a billion years. Recent times have seen the development of increasingly active molecular WOCs, the study of which affords an understanding of catalytic mechanisms and decomposition pathways. This Perspective offers a historical description of the landmark molecular WOCs, particularly ruthenium systems, that have guided research to our present degree of understanding. Water oxidation catalysts are key components in water-splitting devices that synthesize fuels by using energy, including that from sunlight. This Perspective presents historical developments in molecular water oxidation catalysis, emphasizing studies of ruthenium complexes that have taught us how to design optimal catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.