Abstract

Gravity related behavior and the underlying neuronal networks are the most suitable model systems to study basic effects of altered gravitational input on the development of neuronal systems. A feature of sensory and motor systems is their susceptibility to modifications of their adequate physical and/or chemical stimuli during development. This discovery led to the formulation about critical periods, which defines the period of susceptibility during post-embryonal development. Critical periods can be determined by long-lasting modifications of the stimulus input for the gravity sensory system (GSS). Techniques include: (1) destruction of the gravity sense organ so that the gravity cannot be detected any longer and the central neuronal network of the GSS is deprived of gravity related information, (2) loading or deloading of parts of the body by weights or counterweights, respectively, which compensates for the gravitational pull, and (3) absence or augmentation of the gravitational environment per se by the exposure of organisms to microgravity during spaceflights or to hypergravity by centrifugation. Most data came from studies on compensatory eye or head movements in the clawed toad Xenopus laevis, the cichlid fish Oreochromis mossambicus, and crickets (Acheta domesticus, Gryllus bimaculatus). The responses are induced by a roll or pitch stimulation of the gravity sense organs, but are also affected by sensory inputs from proprioreceptors and eyes. The development of these compensatory eye and head responses reveals species-specific time courses. Based on experiments using spaceflights, centrifugation, lesion and loading or deloading, all species revealed a significant susceptibility to modifications of the gravity sensory input during development. Behavioral responses were depressed (Xenopus) or augmented (Xenopus, Oreochronis) by microgravity, and depressed by hypergravity except in crickets. In Acheta, however, the sensitivity of its position sensitive neuron PSI was reduced by microgravity. After termination of the period of modified gravity sensory input, all behavioral and physiological modifications disappeared, in some preparations such as the PSI of Acheta or the eye response in Xenopus, however, delayed after exposure to hypergravity. Irreversible modifications were rare; one example were malformations of the body of Xenopus tadpoles caused by lesion induced deprivation. Several periods of life such as the period of hatching or first appearance of gravity related reflexes revealed a specific sensitivity to altered gravity. Although all studies gave clear evidences for a basic sensitivity of developing GSSs to long-lasting modifications of the gravity sensory input, clear arguments for the existence of a critical period in the development of the sense of gravity are still missing. It has to take into consideration that during long-term exposures, adaptation processes take place which are guided by central physiological and genetically determined set points. The International Space Station (ISS) is the necessary platform of excellence if biological research is focussed on the analysis of long-term space effects on organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.