Abstract

Galton greeted Darwin's theory of pangenesis with enthusiasm, and tried to test the assumption that the heredity particles circulate in the blood by transfusion experiments on rabbits. The failure of these experiments led him to reject this assumption, and in the 1870s he developed an alternative theory of heredity, which incorporated those parts of Darwin's theory that did not involve the transportation of hereditary particles throughout the system. He supposed that the fertilized ovum contains a large number of hereditary elements, which he collectively called the "stirp," a few of which are patent, developing into particular cell types, while the rest remain latent; the latent elements can be transmitted to the next generation, while the patent elements, with rare exceptions, cannot since they have developed into cells. The problem with this theory is that it does not explain the similarity between parent and child unless there is a high correlation between latent and patent elements. Galton probably came to realize this problem during his subsequent statistical work on heredity, and he quietly dropped the idea that patent elements are not transmitted in Natural Inheritance (1889). Galton thought that brothers and sisters had identical stirps, and he attributed differences between them to variability in the choice of patent elements from the stirp, that is to say to developmental variability. He attributed the likeness of monozygotic twins to the similarity of their developmental environment. Galton's twin method was to track the life history changes of twins to see whether twins who were similar at birth diverged in dissimilar environments or whether twins who were dissimilar at birth converged in similar environments. It is quite different from the modern twin method of comparing the similarities between monozygotic and dizygotic twins, on the assumption that monozygotic twins are genetically identical whereas dizygotic twins are not. It has been argued that Galton foreshadowed Weismann's theory in the continuity of the germ-plasm, but this is only true in a weak sense. They both believed that the inheritance of acquired characters was either rare or impossible, but Galton did not forestall the essential part of Weismann's theory, that the germ-plasm of the zygote is doubled, with one part being reserved for the formation of the germ-cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call