Abstract

Abstract The advantages of compliant or flexible link mechanisms include increased design flexibility and reduction in manufacturing time and cost. The analysis of such mechanisms may be difficult and time consuming due to the nonlinearities introduced by large deflections. Also, unlike rigid-body mechanisms, the type and form of motion of a compliant mechanism is dependent on the location and magnitude of applied loads. The pseudo-rigid-body model concept has been developed to simplify the analysis of compliant mechanisms by allowing them to be modeled as rigid-link mechanisms with springs. This work uses the principle of virtual work and the pseudo-rigid-body model concept to develop force-deflection relationships for compliant mechanisms. Several examples are presented, and general design equations are derived for pseudo-rigid-body four-bar and slider-crank mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.