Abstract

The operation of coal mines is intricately linked with emitting a large quantity of coal mine methane, and in most cases, this methane releases into the atmosphere. In total, according to statistics, coal mining enterprises emit 8% of anthropogenic methane, determining a contribution to greenhouse gas emissions to the amount of 17%. There are various means for coal mine methane utilization. In this study, the concept “Coal-Energy-Information” is proposed. This concept implies both the construction of data processing centers on the industrial sites of coal mines and the usage of coal mine methane. Coal mine methane can be used as a primary energy source for the energy supply of data processing center consumers as well as coal mine consumers with necessary energy resources (electricity, heat, and cooling). Within the framework of the proposed concept, three options of coal mine methane utilization are considered. The first option is the use of gas genset for electrical and thermal energy generation (cogeneration) and their usage for coal mine and constructed data processing centers and consumers’ power supply. The second option is absorption refrigerator usage (with coal mine methane direct burning) for cooling the IT equipment of constructed data processing centers. The last one is the use of a gas genset and absorption refrigerator (trigeneration) for constructed data processing centers’ and coal mine consumers’ energy supplies (electricity, heat, and cooling). In conclusion, it is noted that proposed concept is closely correlated with the program for the development of the coal industry in Russia for the period up to 2035, since it allows creating a base for the implementation of innovative technologies based on digital platforms that ensure the development of coal mining technology without the constant presence of personnel in underground mining facilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.