Abstract

We constructed an electric multi-rotor autonomous unmanned aerial system (UAS) to perform mosquito control activities. The UAS can be equipped with any of four modules for spraying larvicides, dropping larvicide tablets, spreading larvicide granules, and ultra-low volume spraying of adulticides. The larvicide module sprayed 124 μm drops at 591 mL/min over a 14 m swath for a total application rate of 1.6 L/ha. The tablet module was able to repeatedly deliver 40-gram larvicide tablets within 1.1 m of the target site. The granular spreader covered a 6 m swath and treated 0.76 ha in 13 min at an average rate of 1.8 kg/ha. The adulticide module produced 16 μm drops with an average deposition of 2.6 drops/mm2. UAS pesticide applications were made at rates prescribed for conventional aircraft, limited only by the payload capacity and flight time. Despite those limitations, this system can deliver pesticides with much greater precision than conventional aircraft, potentially reducing pesticide use. In smaller, congested environments or in programs with limited resources, UAS may be a preferable alternative to conventional aircraft.

Highlights

  • In 1972, a team from the University of Delaware constructed and flew a radio controlled (RC) plane equipped with a miniaturized ultra-low volume (ULV) spray system [1]

  • While the results were comparable to conventional aircraft, the technology remained impractical, noting “piloting a plane this size from the ground with any precision is more complicated than flying a real airplane” [4]

  • The unmanned aerial system (UAS) was equipped with a Pixhawk1 (3D Robotics1, Inc., Berkeley, CA) flight control system (FCS) because it offered flexibility in programming and controlling peripheral devices

Read more

Summary

Introduction

In 1972, a team from the University of Delaware constructed and flew a radio controlled (RC) plane equipped with a miniaturized ultra-low volume (ULV) spray system [1]. While this marked the first time a remotely piloted aircraft was fitted with an insecticide spray system, it was developed solely for studying spray drift. Eight years later another team from the University of Delaware used a large RC airplane to apply the mosquito adulticides dibrom and malathion to a salt marsh to study the toxicity to killifish [2].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call