Abstract

Considering the widespread use of windows in modern urban landscapes, converting these substrates into photovoltaic devices would remarkably impact modern energy generation. A flexible dye-sensitized solar cell (DSSC) architecture is preferred for such applications. A key component of the DSSC is the dye-sensitized photoanode. Herein, we examine different nanoparticle composites within the semiconductor anode formulation and their effect on device performance. Mesoporous titania particles (TiO2) modified with Au-nanoparticles (TiO2@AuNPs) were synthesized using precipitation strategies to assess the solvent effect on the particle size and the efficiency of the devices. The materials were then fully characterized through SEM, XRD, and DRS before and after thermal treatment. A paste prepared from the synthesized semiconductors was applied onto the substrate using the doctor blading technique. The use of high thermal treatment for glass substrates (HTT), low-temperature thermal treatment (LTT), and LTT combined with 2 h of UV curing (LTT_UV) was explored. In the case of ITO/PET (flexible substrate) only low temperature thermal treatment were used (LTT and LTT_UV). After characterization (XRD and DRS), the anodes were loaded using a metal-free dye. To complete the comparison, several groups of cells were characterized: considering solvent (EtOH and EtOH:H2O), thermal treatment (HTT, LTT, and LTT_UV), and semiconductor material (TiO2 and TiO2@AuNP). Rigid (glass anode-glass cathode) and semiflexible (flexible anode-glass cathode) DSSCs were obtained with efficiencies from 0.03% to 2.4%, with a substantial performance difference seen using different thermal treatments, and a mild to low effect on semiconductor composition and the used substrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call