Abstract

The purpose of this study was to develop an optimized method for the extraction and determination of 17α-ethinylestradiol (EE2) and estrone (E1) in whole fish tissues at ng/g levels. The optimized procedure for sample preparation includes extraction of tissue by accelerated solvent extraction (ASE-200), lipid removal by gel permeation chromatography (GPC), and a cleanup step by acetonitrile precipitation followed by a hexane wash. Analysis was performed by gas chromatography/mass spectrometry (GC/MS) in negative chemical ionization (NCI) mode after samples were derivatized with pentafluorobenzoyl chloride (PFBCl). The method was developed using high lipid content wild fish that were exposed to the tested analytes. The whole procedure recoveries ranged from 74.5 to 93.7% with relative standard deviation (RSD) of 2.3–6.2% for EE2 and 64.8 to 91.6% with RSD of 9.46–0.18% for E1. The method detection limits were 0.67 ng/g for EE2 and 0.68 ng/g for E1 dry weight. The method was applied to determine EE2 levels in male goldfish ( Carrasius auratus) after a 72 h dietary exposure. All samples contained EE2 averaging 1.7 ng/g (±0.29 standard deviation, n = 5). This is the first optimized protocol for EE2 extraction from whole fish tissue at environmentally relevant concentrations. Due to high sensitivity and recovery, the developed method will improve our knowledge about the environmental fate and uptake of synthetic steroidal estrogens in fish populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.