Abstract

To solve the problem of unreliability of traceability information in the traceability system, we developed an intelligent monitoring system to realize the real-time online acquisition of physicochemical parameters of the agricultural inputs and to predict the varieties of input products accurately. Firstly, self-developed monitoring equipment was used to realize real-time acquisition, format conversion and pretreatment of the physicochemical parameters of inputs, and real-time communication with the cloud platform server. In this process, LoRa technology was adopted to solve the wireless communication problems between long-distance, low-power, and multinode environments. Secondly, a deep belief network (DBN) model was used to learn unsupervised physicochemical parameters of input products and extract the input features. Finally, these input features were utilized on the softmax classifier to establish the classification model, which could accurately predict the varieties of agricultural inputs. The results showed that when six kinds of pesticides, chemical fertilizers, and other agricultural inputs were predicted through the system, the prediction accuracy could reach 98.5%. Therefore, the system can be used to monitor the varieties of agrarian inputs effectively and use in real-time to ensure the authenticity and accuracy of the traceability information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.