Abstract

In this work, an implicit scheme for particle-in-cell/Fourier electromagnetic simulations is developed and applied to studies of Alfvén waves in one dimension and three dimensional tokamak plasmas. An analytical treatment is introduced to achieve efficient convergence of the iterative solution of the implicit field-particle system. First, its application to the one-dimensional uniform plasma demonstrates its applicability in a broad range of β/me values. Second, toroidicity induced Alfvén eigenmodes (TAE) are simulated in a three dimensional axisymmetric tokamak plasma, using the widely studied case defined by the International Tokamak Physics Activity (ITPA) Energetic Particle (EP) Topical Group. The real frequency and the growth (or damping) rate of the TAE with (or without) EPs agree with previous results reasonably well. The full f electromagnetic particle scheme established in this work provides a possible natural choice for EP transport studies where large profile variation and arbitrary particle distribution functions need to be treated in kinetic simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.