Abstract

Models for bathymetry retrieval from multispectral images have not considered the errors caused by tidal fluctuation. A rigorous bathymetric model that considers the variation in tide height time series, including the tide height calculation and instantaneous tide height correction at the epoch of satellite flight into the bathymetric retrieval model, is proposed in this paper. The model was applied on Weizhou Island, located in Guangxi Province, China, and its accuracy verificated with four check lines and seven checkpoints. A scene from the Landsat 8 satellite image was used as experimental data. The reference (“true”) water depth data collected by a RESON SeaBat 7125 multibeam instrument was used for comparison analysis. When satellite-derived bathymetry is compared, it is found that maximum absolute error, mean absolute error, and RMSE have decreased 54, 45, and 30% relative to that of the traditional model in the entire test field. The accuracy of the water depths retrieved by our model increased 30 and 56% when validated using four check lines and seven checkpoints, respectively. Therefore, it can be concluded that the model proposed in this paper can effectively improve the accuracy of bathymetry retrieved from Landsat 8 images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call