Abstract

The necessity of reducing the greenhouse effect by decreasing the carbon dioxide fingerprint directed the food packaging technology to use biobased raw materials. Alginates, which are derived from brown algae species, are one of the most promising biobased biopolymers for the development of edible active coatings capable of protecting food from oxidation/bacterial spoilage. In this study, sodium alginate, which was plasticized with glycerol and mixed with a biobased thymol/natural halloysite nanohybrid, was used to develop novel edible active coatings. Nanocomposite coatings were also developed in this project by mixing pure halloysite with sodium alginate/glycerol matrix and were used as reference material for comparison reasons. Instrumental analysis indicated a higher compatibility of a thymol/halloysite nanohybrid with a sodium alginate/glycerol matrix compared to pure halloysite with a sodium alginate/glycerol matrix. Increased compatibility resulted in improved tensile properties, water/oxygen barrier properties, and total antioxidant activity. These edible active coatings were applied to traditional Greek spread cheese and showed a reduction in the mesophilic microbial population over one log10 unit (cfu/g) compared to uncoated cheese. Moreover, the reduction in the mesophilic microbial population increased with the increase in halloysite and thymol content, indicating such sodium alginate/glycerol/thymol/halloysite hydrogels as promising edible active coatings for dairy products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.