Abstract

ObjectiveAlthough inferior vena cava (IVC) filters are commonly retrieved using a snare, lateral tilt and fibrosis around struts can complicate the procedure and sometimes require the use of off-label devices. We describe the development of a novel articulating endovascular grasper designed to remove permanent and retrievable IVC filters in any configuration. MethodsFor in vitro testing, the IVC filters were anchored to the inner wall of a flexible tube in a centered or tilted configuration. A high-contrast backlit camera view simulated the two-dimensional fluoroscopy projection during retrieval. The time from the retrieval device introduction into the camera field to complete filter retrieval was measured in seconds. The control experiment involved temporary IVC filter retrieval with a snare. There were four comparative groups: (1) retrievable filter in centered configuration; (2) retrievable filter in tilted configuration; (3) permanent filter in centered configuration; and (4) permanent filter in tilted configuration. Every experiment was repeated five times, with median retrieval time compared with the control group. For in vivo testing in a porcine model, six tilted infrarenal IVC filters were retrieved with grasper via right jugular approach. Comparison analysis between animal and patient procedures was performed for the following variables: total procedure time, the retrieval time, and fluoroscopy time. ResultsThe in vitro experiments showed comparable retrieval times between the experimental groups 1, 2, and 4 and the control. However, grasper removal of a centered permanent filter (group 3) required significantly less time than in the control (29 vs 79 seconds; P = .009). In the animal model, all IVC filters were retrieved using the grasper with no adverse events. The total procedure time (21.2 vs 43.5 minutes; P = .01) and the fluoroscopy time (4.3 vs 10 minutes; P = .044) were significantly shorter in the animal model compared with the patient group. Moreover, in the patient group, 16.7% of retrievals required advanced endovascular techniques, and one IVC filter could not be retrieved (success rate = 91.7%), whereas all the IVC filters were successfully retrieved in the animal model without the use of additional tools. ConclusionsThe novel endovascular grasper is effective in retrieving different types of IVC filters in different configurations and compared favorably with the snare in the in vitro model. In vivo experiments demonstrated more effective retrieval when compared with matched patient retrievals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call