Abstract

A significant problem encountered in the gas turbine industry with fuel products is the degradation of fuel and fuel systems by microorganisms, which are largely bacteria, embedded in biofilms. These microorganisms cause system fouling and other degradatory effects, extending often to sudden failure of components with cost implications. Current methods of assessment are only post-impact evaluation and do not necessarily quantify the effects of fuel degradation on engine performance and emission. Therefore, effective models that allow predictive condition monitoring are required for engine’s fuel system reliability, especially with readily biodegradable biofuels. The aim of this paper is to introduce the concept of bio-fouling in gas turbines and the development of a bio-mathematical model with potentials to predict the extent and assess the effects of microbial growth in fuel systems. The tool takes into account mass balance stoichiometry equations of major biological processes in fuel bio-fouling. Further development, optimization and integration with existing Cranfield in-house simulation tools will be carried out to assess the overall engine performance and emission characteristics. This new tool is important for engineering design decision, optimization processes and analysis of microbial fuel degradation in gas turbine fuels and fuel systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.