Abstract

To enhance the advantages of fluorescent flow-through sensing for drinking water we have designed a novel sensing matrix based on molecularly imprinted polymers (MIPs). The synergic combination of a tailor-made MIP recognition with a selective room temperature fluorescence detection is a novel concept for optosensing devices and is assessed here for the simple and selective determination of pollutants in water.We describe a simple approach to preparing synthetic receptors for monoamine naphthalene compounds (MA-NCs) using non-covalent molecular imprinting techniques and naphthalene as template. We examine in detail the binding characteristics of the imprinted polymer and describe the flow-through sensor of MA-NCs by solid-surface fluorescence. Its detection limits for recognizing 1-naphthylamine (1-NA) and 2-naphthylamine (2-NA) separately are 26ngmL−1 and 50ngmL−1, respectively, and it also determines 1-NA and 2-NA simultaneously with a detection limit of 45ngmL−1.All the instrumental, chemical and flow variables were carefully optimized and an interference study was carried out to demonstrate its applicability and selectivity. Finally, we applied it to the analysis of 1-NA and 2-NA in tap and mineral waters, obtaining a 98% average recovery rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.