Abstract

Zero-carbon shipping is the prime goal of the seaborne trade industry at this moment. The utilization of ammonia and liquid hydrogen propulsion in a carbon-free propulsion system is a promising option to achieve net-zero emission in the maritime supply chain. Meanwhile, optimal ship voyage planning is a candidate to reduce carbon emissions immediately without new buildings and retrofits of the alternative fuel-based propulsion system. Due to the voyage options, the precise prediction of fuel consumption and carbon emission via voyage operation profile optimization is a prerequisite for carbon emission reduction. This paper proposes a novel fuel consumption and carbon emission quantity prediction method which is based on the onboard measurement data of a smart ship. The prediction performance of the proposed method was investigated and compared to machine learning and LSTM-model-based fuel consumption and gas emission prediction methods. The results had an accuracy of 81.5% in diesel mode and 91.2% in gas mode. The SHAP (Shapley additive explanations) model, an XAI (Explainable Artificial Intelligence), and a CO2 consumption model were employed to identify the major factors used in the predictions. The accuracy of the fuel consumption calculated using flow meter data, as opposed to power load data, improved by approximately 21.0%. The operational and flow meter data collected by smart ships significantly contribute to predicting the fuel consumption and carbon emissions of vessels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.