Abstract

BackgroundAccidental hypothermia is a serious condition that requires immediate and accurate assessment to determine severity and treatment. Currently, accidental hypothermia is evaluated using the Swiss grading system which uses core body temperature and clinical findings; however, research has shown that core body temperature is not associated with in-hospital mortality in urban settings. Therefore, we developed and validated a severity scale for predicting in-hospital mortality among urban Japanese patients with accidental hypothermia.MethodsData for this multi-center retrospective cohort study were obtained from the J-point registry. We included patients with accidental hypothermia who were admitted to an emergency department. The total cohort was divided into a development cohort and validation cohort, based on the location of each institution. We developed a logistic regression model for predicting in-hospital mortality using the development cohort and assessed its internal validity using bootstrapping. The model was then subjected to external validation using the validation cohorts.ResultsAmong the 572 patients in the J-point registry, 532 were ultimately included and divided into the development cohort (N = 288, six hospitals, in-hospital mortality 22.0%) and the validation cohort (N = 244, six hospitals, in-hospital mortality 27.0%). The 5 “A” scoring system based on age, activities-of-daily-living status, near arrest, acidemia, and serum albumin level was developed based on the variables’ coefficients in the development cohort. In the validation cohort, the prediction performance was validated.ConclusionOur “5A” severity scoring system could accurately predict the risk of in-hospital mortality among patients with accidental hypothermia.

Highlights

  • Accidental hypothermia is a serious condition that requires immediate and accurate assessment to determine severity and treatment

  • In Japan, Critical Care Medical Centers (CCMCs) are certified by the Ministry of Health, Labour and Welfare based on emergency departments (EDs) that treat patients for shock, trauma, resuscitation, and critical care which serve approximately 500,000 residents in each region; in these CCMCs, advanced treatment like extracorporeal membrane oxygenation (ECMO)

  • The patients were divided into the development cohort (N = 288, six hospitals [four CCMCs and two non-CCMCs], in-hospital mortality 22.0%) and the validation cohort (N = 244, six hospitals [four CCMCs and two non-CCMCs], in-hospital mortality 27.0%) (Fig. 1)

Read more

Summary

Introduction

Accidental hypothermia is a serious condition that requires immediate and accurate assessment to determine severity and treatment. We developed and validated a severity scale for predicting in-hospital mortality among urban Japanese patients with accidental hypothermia. Accidental hypothermia (AH) involves an unintentional decrease in core body temperature to ≤ 35 °C [1] This condition is associated with high risks of hemodynamic collapse and mortality (24–40%) [2,3,4], as the cooling heart results in decreased cardiac output and electrical conduction abnormalities leading to life-threatening dysrhythmias, such as bradycardic atrial fibrillation or ventricular fibrillation [1]. AH patients require immediate assessment of the severity and critical care, there is no established risk assessment tool specialized for AH patients This might lead to inappropriate decision-making due to a lack of accurate information for the prognosis. The present study aimed to develop and validate a severity scaling system for predicting in-hospital mortality using data from Japanese patients who experienced AH in urban settings

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.