Abstract
The aquaculture industry has rapidly grown over the year. One pertinent aspect is the ability of the aquaculture farm management to accurately count the fish populations to provide effective feeding and the control of breeding density. The current practice of counting the fish manually increased the hatchery workers workload and led to inefficiency. The presented work proposed an intelligent, web-based fish counting system to assist hatchery workers in counting fish from images. The methodology consists of two phases. First, an intelligent fish counting engine is developed. The captured image was first enhanced using the contrast limited adaptive histogram equalization. A deep learning architecture in the form of you only look once (YOLO)v5 is used to generate a model to identify and count fish on the image. Second, a web-based application is developed to implement the developed fish counting engine. When applied to the test data, the developed engine recorded a precision of 98.7% and a recall of 65.5%. The system is also evaluated by hatchery workers in the University Malaysia Sabah fish hatchery. The results of the usability and functionality evaluations indicate that the system is acceptable, with some future work suggested based on the feedback received.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of Electrical Engineering and Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.