Abstract

We have developed a new environmentally fitted 24kV cubicle-type gas insulated switchgear (C-GIS) applying our dry air insulation technology and the electromagnetic actuation technology. Firstly, we clarified the relationship between the breakdown field strength at the tip/edge of high-voltage electrode in dry air and the field utilization factor expressing non-uniformity of the insulation gap. Based on the relationship, we designed the most suitable configuration and arrangement of the parts such as high-voltage conductors, disconnecting blades and some mechanical parts in a gas vessel. We succeeded in reducing both the number of insulation barriers and their size, compared with the former product. To reduce them, we produced some sample gaps simulated a practical insulation gap in the C-GIS and investigated its breakdown voltage dependence on the barrier height. Secondly, to apply the electromagnetic actuators for the operation mechanisms of the vacuum circuit breaker, we developed a new coupled analysis method that estimates the movement of a plunger inside the electromagnetic actuator and the electric current flowing through a closing/opening coil. Based on the analysis method, we could reduce both the number of the parts and close/open energy 45% and 80%, respectively, compared with the former spring-charged mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.