Abstract

The purposes of this study were to develop a new cultural method for the rat bone marrow stromal cells (MSCs) to differentiate into osteoblasts well in vitro, and to investigate the feasibility of using MSCs as seed cells and three-dimensional porous nano-hydroxylapatite as scaffolds for constructing tissue-engineered bone. MSCs of rats were isolated, cultured, induced to differentiate into osteoblasts, and then observed with inverted microscopy. Histochemical staining and radio-immunological analysis were applied for identifying MSCs. Whereafter MSCs were seeded onto three-dimensional porous nano-hydroxylapatite scaffolds, and scanning electron microscopy was applied to evaluate their growth on scaffolds. Results showed that MSCs were typical fibroblast-like and possessed a better proliferating capability; the activity of alkaline phosphatase (ALP) and the secretion of osteocalcin of MSCs were produced gradually and increased continuously; the cells seeded on three-dimensional porous nano-hydroxylapatite scaffolds adhered, proliferated and differentiated well. These results demonstrated that the new improved culture method had the advantages of short isolating time, less risk of contamination and higher efficiency and accordingly was conducive to MSCs proliferating and differentiating into osteoblasts, and that it was advantageous to constructing tissue-engineered bone using MSCs as seed cells and three-dimensional porous nano-hydroxylapatite as scaffolds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call