Abstract

Early identification of frailty is crucial to prevent or reverse its progression but faces challenges due to frailty’s insidious onset. Monitoring behavioral changes in real life may offer opportunities for the early identification of frailty before clinical visits. This study presented a sensor-based system that used heterogeneous sensors and cloud technologies to monitor behavioral and physical signs of frailty from home settings. We aimed to validate the concurrent validity of the sensor measurements. The sensor system consisted of multiple types of ambient sensors, a smart speaker, and a smart weight scale. The selection of these sensors was based on behavioral and physical signs associated with frailty. Older adults’ perspectives were also included in the system design. The sensor system prototype was tested in a simulated home lab environment with nine young, healthy participants. Cohen’s Kappa and Bland–Altman Plot were used to evaluate the agreements between the sensor and ground truth measurements. Excellent concurrent validity was achieved for all sensors except for the smart weight scale. The bivariate correlation between the smart and traditional weight scales showed a strong, positive correlation between the two measurements (r = 0.942, n = 24, p < 0.001). Overall, this work showed that the Frailty Toolkit (FT) is reliable for monitoring physical and behavioral signs of frailty in home settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call