Abstract
BACKGROUND:Post-natal growth restriction (PNGR) in premature infants increases risk of pulmonary hypertension (PH). In a rodent model, PNGR causes PH, while combining PNGR and hyperoxia increases PH severity. We hypothesized that PNGR causes intestinal dysbiosis and that treatment with a probiotic attenuates PNGR-associated PH.METHOD:Pups were randomized at birth to room air or 75% oxygen (hyperoxia), to normal milk intake (10 pups/dam) or PNGR (17 pups/dam), and to probiotic Lactobacillus reuteri DSM 17938 or phosphate-buffered saline. After 14 d, PH was assessed by echocardiography and right ventricular hypertrophy (RVH) was assessed by Fulton’s index (right ventricular weight/left ventricle+septal weight). The small bowel and cecum were analyzed by high throughput 16S ribosomal RNA gene sequencing.RESULTS:PNGR with or without hyperoxia (but not hyperoxia alone) altered the microbiota of the distal small bowel and cecum. Treatment with DSM 17938 attenuated PH and RVH in pups with PNGR but not hyperoxia alone. DSM 17938 treatment decreased α-diversity. The intestinal microbiota differed based on oxygen exposure, litter size and probiotic treatment.CONCLUSION:PNGR causes intestinal dysbiosis and PH. Treatment with DSM 17938 prevents PNGR-associated RVH and PH. Changes in the developing intestine and intestinal microbiota impact the developing lung vasculature and RV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.