Abstract

Boolean functions are important building blocks in cryptography for their wide application in both stream and block cipher systems. For cryptanalysis of such systems, one tries to find out linear functions that are correlated to the Boolean functions used in the crypto system. Let f be an n-variable Boolean function and its Walsh spectra is denoted by Wf(ω) at the point ω ∈ {0, 1}n. The Boolean function is available in the form of an oracle. We like to find a ω such that Wf(ω) ≠ 0 as this will provide one of the linear functions which are correlated to f. We show that the quantum algorithm proposed by Deutsch and Jozsa7 solves this problem in constant time. However, the best known classical algorithm to solve the problem requires exponential time in n. We also analyze certain classes of cryptographically significant Boolean functions and highlight how the basic Deutsch–Jozsa algorithm performs on them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.