Abstract
We have studied here the impact of finish cooling temperature on the microstructural evolution and precipitation behavior in Nb-V-Ti microalloyed steel through thermo-mechanical simulation in the context of newly developed ultrafast cooling system. The microstructural evolution was studied in terms of morphology and crystallography of precipitates using high-resolution transmission electron microscopy. At finish cooling temperature of 933 K and 893 K (660 °C and 620 °C), the microstructure primarily consisted of polygonal ferrite, together with a small amount of wedge-shaped acicular ferrite and lamellar pearlite, while, at 853 K and 813 K (580 °C and 540 °C), the microstructure consisted of lath bainite with fine interlath cementite and granular bainite with martensite/austenite (M/A) constituent. In all the finish cooling temperatures studied, the near-spherical precipitates of size range ~2 to 15 nm were randomly dispersed in ferrite and bainite matrix. The carbide precipitates were identified as (Nb,V)C with NaCl-type crystal structure. With a decrease in the finish cooling temperature, the size of the precipitates was decreased, while the number density first increased with a peak at 893 K (620 °C) and then decreased. Using Ashby–Orowan model, the contribution of the precipitation strengthening to yield strength was ~149 MPa at the finish cooling temperature of 893 K (620 °C).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.