Abstract

A practical experimental model system has been successfully used to study the frictional response of organic powder compacts sliding across a polished steel plate, representative of the die bore of a production compaction system. This system offers a controlled approach to the study of frictional phenomena occurring during compaction and facilitates a more detailed investigation into the fundamental mechanisms of friction than a simple resolution of forces within a punch and die apparatus. For acetylsalicyclic acid sliding on steel, the dynamic friction coefficient was found to be dependent on the displacement and, to a lesser extent, the initial normal load, whereas for PTFE on steel, the dynamic friction coefficient was independent of displacement and load and estimated at 0.09. Thus, soft organic materials exhibit very different frictional characteristics to those of brittle materials. These differences reflect the differing importance and magnitude of the three frictional components, adhesion, shear and ploughing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call