Abstract

The temperature dependence of low-energy electron diffraction (LEED) intensities has often been interpreted with kinematic theory in terms of an effective Debye temperature θ D eff of the surface atoms. The validity of this procedure, often questioned in the literature, is tested with a computer experiment in which LEED spectra are calculated from dynamical theory (layer-KKR method) for a model of Ag{111} with a given value of θ D eff and then the usual kinematic formulae are used to re-extract the value of θ D eff. The results of the experiment indicate that this procedure yields rough values of the surface Debye temperature for electron energies higher than about 40 eV, which fluctuate substantially and tend to be somewhat smaller than that originally introduced into the model. At energies lower than about 40 eV the kinematically deduced values of θ D eff are too large by 10 to 15 %.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.