Abstract

The HIV integrase enzyme is a validated drug target. However, its potential has remained largely unexploited until recently due to lack of structural and mechanistic information. Its catalytic core domain (CCD) is crucial for the viral-human DNA integration making integrase an ideal target for inhibitor design. However, in order to do so, force field parameters for the integrase magnesium ion need to be established. Quantum mechanical calculations were used to derive force field parameters which were validated through molecular dynamics studies. Our results show that the parameters determined accurately maintain the integrity of the metal pocket of the integrase CCD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call