Abstract

A gas chromatographic-mass spectrometric (GC-MS) method has been developed for the analysis of the biperiden from plasma. The method utilizes 290 microl of plasma and a simple hexane extraction/clean-up procedure. Standard curves were linear over the range of 1.9-250 ng/mL. The range of correlation coefficients for the individual standard curves was 0.9984-0.9999; the largest coefficient of variation expressed as a percentage (% CV) was 11.5%. Precision and accuracy were examined by assessing between-day and within-day variability. For between-day precision, the % CVs ranged from 2.86 to 5.17%. Accuracy as expressed by percentage error ranging from -2.16 to 5.83%. The study for within-day precision demonstrated % CVs from 0.95 to 5.55% with accuracy from -3.37 to 2.45%. Applicability of the method was demonstrated by examining the pharmacokinetics of intramuscular (i.m.) biperiden as an anticonvulsant treatment in a guinea pig model for organophosphate (OP)-induced seizure activity. Mean pharmacokinetic parameter estimates were similar to literature values; selected mean pharmacokinetic parameter estimates were: apparent volume of distribution, 13.9 L/kg; half-life of elimination, 93 min; time to maximal plasma concentration, 27.4 min; and maximal plasma concentration, 32.22 eta g/mL. The time to maximal plasma concentration was found to be similar to the onset time for terminating OP-induced seizure activity in guinea pigs receiving biperiden as an anticonvulsant treatment. The studies indicate that the method affords the required precision, accuracy and sensitivity to assay biperiden at the doses utilized for these pharmacokinetic studies after i.m. administration to guinea pigs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.