Abstract

The classification of Badidae family based on morphology has been revised several times, but data on complete mitogenome are scarce, the complete mitochondrial genome of the Badidae fish Dario dario was characterized for the first time in the present study. The whole mitogenome was 16,830 bp in size and consisted of 13 protein-coding genes, 22 tRNAs, two rRNAs genes, a control region and origin of light-strand replication. The proportion of coding sequences with a total length of 11,431 bp was 67.92%, which encoded 3800 amino acids. The genome composition was highly A + T biased (58.12%), and exhibited a negative AT-skew (–0.0045) and GC-skew (–0.2347). All protein-coding genes started with ATG except for GTG in CO1, while stopped with the standard TAN codons or a single T. The control region (D-loop) ranging from 15,658 bp to 16,830 bp was 1173 bp in size. Phylogenetic analysis showed that D. dario was most closely related to Badis badis. The complete mitochondrial genome sequence provided new insight into taxonomic classification, and a more complex picture of species diversity within the Anabantiformes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call