Abstract
Previous experiments with mice have shown that a repeated 1 h daily exposure to an ambient magnetic field shielded environment induces analgesia (anti-nociception). This shielding reduces ambient static and extremely low frequency magnetic fields (ELF-MF) by approximately 100 times for frequencies below 120 Hz. To determine the threshold of ELF-MF amplitude that would attenuate or abolish this effect, 30 and 120 Hz magnetic fields were introduced into the shielded environment at peak amplitudes of 25, 50, 100 and 500 nT. At 30 Hz, peak amplitudes of 50, 100, and 500 nT attenuated this effect in proportion to the amplitude magnitude. At 120 Hz, significant attenuation was observed at all amplitudes. Exposures at 10, 60, 100, and 240 Hz with peak amplitudes of 500, 300, 500, and 300 nT, respectively, also attenuated the induced analgesia. No exposure abolished this effect except perhaps at 120 Hz, 500 nT. If the peak amplitude frequency product was kept constant at 6000 nT-Hz for frequencies of 12.5, 25, 50, and 100 Hz, the extent of attenuation was constant, indicating that the detection mechanism is dependent on the nT-Hz product. A plot of effect versus the induced current metric nT-Hz suggests a threshold of ELF-MF detection in mice at or below 1000 nT-Hz.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.