Abstract

Nitroaromatic compounds (NACs) can lead to various environmental pollution healh problems. In order to effectively recognize and sense NACs, a novel coordination polymers (CPs) with fluorescent characteristic [Zn3(btc)2(tpt)(H2O)2]·4H2O (1) (tpt = tris(4-pyridyl)triazine, H3btc = 1,3,5-benzenetricarboxylic acid) has been triumphantly prepared as an fluorescence probe by solvothermal method. 1 possesses remarkable PH stability ranging from 2.0 to 12.0 and is also stable in different pure organic solvents. It should be noted that 1 manifests a fluorescence quenching response against the detection of selectivity and sensitivity towards 2,4,6-trinitrophenol (TNP) in aqueous solution. It also makes analysis on the limit of detection towards TNP, which is as low as 0.94 µM compared with most reported CPs sensors for TNP. Therefore, 1 can become a satisfactory sensor for TNP detection with remarkable selectivity, strong anti-interference and favorable recyclability. In addition, the quenching mechanisms were also discussed. It was supposed that the mechanisms of photoinduced electron transfer (PET) as well as resonance energy transfer (RET) might be the main influencing factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call